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Abstract. In this paper the authors want to prove that a trendless sequence (TLS) can be used as an
additional source of information. This additional information can be extracted from random noise with
the help of 3D-DGIs (discrete geometrical invariants) method that allows to reduce 3N random data
points to 13 parameters composed from the combination of integer moments and their intercorrelations
up to the fourth order inclusive. Actually, they form a «universal» 13-feature space for comparison of one
random sequence with another one. Comparison of these parameters associated with different noise tracks
allows to use this set of parameters for calibration and other purposes associated with «standard»/reference
equipment. As an example, we treated the measured and nonfiltered TLS obtained from ELVIS II
workbench (National Instrument Corporation). New method helps to find the differences between 4
types of the recorded TLS(s) samplings (forming the corresponding rectangle matrices) belonging to the
chosen ADCs and choose the «best» one among them.

Keywords: Discrete Geometrical Invariants; 13-dimensional feature space; Trendless noise tracks; ADC(s)
comparison.

Introduction

The idea that the chosen set of random fluctuations (after removing a possible trend and defined as
a «noise») contains a «hidden» source of information is not a new one. Part of the researchers tries to
extract an information based on some reasonable suppositions. In particular, the basics of the fluctuation
noise spectroscopy (including also many useful references) is given in the book [1] and papers [2-3].

The approach based on the Mori-Zwanzig formalism was given in the papers [4-5].
Unfortunately, these approaches include some unjustified suppositions and contain some treatment
errors. Therefore, they become useless in analysis of random sequences having different nature.
These suppositions and their analysis are listed in paper [6]. The essential results were obtained
from analysis of electrochemical noise [7-12], other type of ‘noises’ as understanding of the
earthquakes phenomenon and their quantitative description, analysis of medical data is given in
papers [3, 4, 13, 14]. Unfortunately, in spite of these promising attempts the general picture associated
with analysis of arbitrary types of random sequences (especially TLS) is far from an ‘ideal’ one.
Researches based on their own (and in many cases unjustified suppositions) try to process many
types of random sequences and extract an «information» mixed with treatment/uncontrollable errors.
Especially, they have problems with analysis of equipment «noise» (pure TLS) that in many cases is
not the Gaussian, uniform and other type of «color» noises that are widely used in the mathematical
statistics as an approximation of the real TLS(s).

ÝËÅÊÒÐÎÍÈÊÀ
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Therefore, there is a vital task in creation of the reliable processing tool that: (a) should be free
from the treatment errors and (b) rather «universal» for application to any TLS that is generated or
contained in the given equipment.

In this paper, we propose for a wide group of researchers the desired and general tool based on
the «modeless» reading of random sequences/fluctuations. The creation of this promising method is
based on the ideas expressed by Yu. I. Babenko [15,16] associated with the generalization of the
Pythagorean theorem. One of us (RRN) applied these ideas to random sequences and used the
discrete geometrical invariants (DGI) in 2D space for differentiation of different types of olive oils
[17] and equipment noise [18] reducing initially 2N random data points to 8 independent parameters
representing a combination of integer moments and intercorrelations up to the fourth order inclusive.
One can continue these ideas and consider the complete set of the DGI(s) in 3D space. Application
of this method allows to transform the set of arbitrary chosen 3N data points, forming the complete
fourth order form to 13 independent parameters forming the feature space of the corresponding
dimension. Besides, these 13 parameters extracted from the considered random sequence represent
themselves a specific «fingerprint» for observing the evolution of random sequence in time or against
another external factor as concentration, electromagnet/acoustic field intensityetc., in 3D space.
This reduction procedure reminds a procedure used in the statistical mechanics when with the help
of the Gibbs partition function 3N trajectories of the microscopic particles are reduced to a finite set
of thermodynamic parameters. Actually, the 3D-DGI(s) method realizes a similar procedure, i.e., it
reduces 3N combination of an arbitrary random data points to 13 quantitative parameters forming
the specific feature space. We want to stress here that this reduction procedure does not use any
model and can be considered as the «modeless» method. Besides, it does not contain any treatment
errors as well and keeps only the measurement/experimental errors.

The content of the paper is organized in five subsections and expressed clearly for reading of
a potential and attentive reader.

1. Description of the 3D-DGI(s) method

In this section, we describe the mathematical details associated with the derivation of the
complete DGI in 3D-space. We remind here that preliminary results based on the application of the
incomplete DGI form of the fourth order in 3D space is outlined recently in [19]. Let us consider the
power-law form of the fourth order:
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In expression (1) the upper indices define the combination of the variables yα (α = 1, 2, 3)
fixing the location of an arbitrary point M(y1, y2, y3) in 3D-space, the low indices determine the
values of the power-law exponents that correspond to the complete algebraic form of the fourth
order. The choice of the sign’s combination (±) before the constants in (1) will be explained below.
Three random sequences are determined by the values rαk (α = 1, 2, 3; k = 1, 2,…, N). Expression (1)
represents itself the complete form of the fourth order that contains the combination of three variables
associated with an arbitrary point M(y1, y2, y3) and three arbitrary sequences rαk. The desired DGI
is obtained from the following requirement:

                                                               (4)
4
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In order to remove in expression (2) the cubic terms we introduce the variables:
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and nullify the linear terms. This requirement helps us to separate the desired variables Ya from each
other and keep only the terms of the second and fourth orders, correspondingly. In order to decrease
the number of constants in (2) and derive the DGI not depending on some free constants one defines
three key ratio constants R(α, β), with combination (α, β) = (1, 2), (1, 3), (2, 3):
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It is convenient also to introduce the following notations for the integer moments and their
intercorrelations and present them as:
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In the result of the introduced notations (4) and (5), the system of linear equations for the
finding of unknown ratios R(α, β) from the nullification requirement of the entering linear terms accepts
the form:
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The linear system of equations helps to reduce 3 moments (Q333, Q222, Q111) and 7 intercorrelations
of the third order (Q332, Q322, Q221, Q211, Q331, Q311, Q321) to calculation of three unknown ratios R(α,β)

only. We should notice also that the combination of the algebraic signs in (1) is chosen in that way
for the keeping of the partial solution R = 1 of system (6a) in the case when all three random
sequences rαk are identical to each other, i.e. r1k = r2k = r3k. It is natural to define it as the case of
spherical symmetry. If only two sequences coincide with other (for example, r1k = r2k ≠ r3k ) then we
deal with the case of the cylindrical symmetry.In this case, the linear system (6a) is reduced to the
couple of linear equations relatively the variables R(1,2)≠ R(1,3)= R(2,3). The number of triple correlations
equals four in this case (Q111, Q113, Q133, Q333).

Equation (6) facilitate considerably the further calculations. After averaging procedure applied
to expression (2) the structure of the fourth order form can be rewritten as:

                                         ( ) ( )4 1 2 3 2 1 2 3 4, , , ,K Y Y Y K Y Y Y I+ = .                                                   (7)

As before [17-19], we chose the value of the invariant I4 as the double value of the free constant
(FC) figuring in the left-hand side of (7), i.e. FC(left side) = 2FC(right side) = I4. After some
algebraic manipulations the fourth and the second order forms entering to the left-hand side can be
presented as:
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The constants Aαβ figuring in expression (8b) are defined as:
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The constant I4 (defined by 3 moments and 12 intercorrelations of the fourth order) figuring in
the right-hand side of (7) is defined as:
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It is interesting to notice that in the case of the spherical symmetry (r1k = r2k = r3k) all correlations
coincide with each other and the value of I4 equals zero. The form of the fourth order (7) admits the
separation of the variables in the spherical system of coordinates. If one accepts the conventional
notations:

                                                     
1 1

2 2

sin cos ;

sin sin ;

y y R

y y R

= + θ ϕ

= + θ ϕ

                                                     
3 3 cos ;

0 ,0 2 ,

y y R= + θ

≤ θ ≤ π ≤ ϕ ≤ π

 (11)



12

ÝËÅÊÒÐÎÍÈÊÀ Ýëåêòðîíèêà, ôîòîíèêà è êèáåðôèçè÷åñêèå ñèñòåìû. 2021. Ò. 1. ¹ 1

then substitution of these variables into (7) leads to the following biquadratic equation relatively the
unknown radius R(θ, ϕ):
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The desired solution (R(θ, ϕ) > 0) is written as:
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The polynomials P2,4(θ, ϕ) entering in (12) are defined by the following expressions:
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The last expressions (11) – (13) determine the final form of the DGI in 3D-space. It includes
three surfaces determined by expressions (11). The further analysis shows that expression (12b)
equals zero (because I4 = 0) in the case of the coincidence of three compared random sequences
(r1k = r2k = r3k). The radius R(θ, ϕ) can contain the complex expression when the integrand in (12b)
becomes negative. It accepts the negative values when the constant I4 in the most cases defined by
expression (10) becomes negative. In this case, it is convenient in many cases to rewrite expressions
(11) in the following final form:
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One can notice also that expressions representing the desired surfaces can be replaced by three
plane functions, also. Really, if we subordinate the angular variables to condition:
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                             (15)

then these three functions can serve for identification and quantitative description of the given
random/deterministic sequences. The compact numbers of the parameters that determine their
behavior are remained the same and equaled 13. It is interesting to notice also that if three compared
random functions completely coincide with each other (I4 = 0) then these functions are reduced to
the gravity point <r1> = <r2> = <r3>.

The curves defined by equation (15) facilitate considerably the numerical analysis of initial
data, while the surfaces (14) give actually a demonstration of the compared sequences in 3D-space.
We want to stress here again that the final expressions (14) and (15) do not use any model assumptions
and are determined completely by the measured data together with their measurement errors. Finishing
this section one can say that this method can be applied for reduction of initial data. This reduction
procedure can be divided on the following stages:

1. Initially, any available data can be written in the form of rectangle matrix [N×M], where
number N (j = 1, 2,..., N – number of rows) determines the given data points and M (m = 1,2,…, M –
columns) determines the number of the repeated measurements forming in total the statistically
significant sampling. As the result of application of 3D-DGI method we obtain the reduced matrix
[M×S], where each column of the reduced matrix (Prm,s: < yα > (3), R(α, β)(3), Aαβ(6), I4(1); α, β = 1, 2, 3)
determines the complete combination of the moments and their intercorrelations (3 + 3 + 6 + 1 = 13)
up to the fourth order inclusive. In the result of application of the 3D-DGI method we obtain s = 1,
2,…, S (S = 13) distributions that demonstrate the variations of each statistical parameter Prs(m)
with respect to the number of repeated measurements (m = 1,2…, M).

2. The further reductionis possible if one takes into account that each random function
ys(m) ≡Prs(m) (belonging to the column m) is located inside the rectangle M×(Range[ys(m)]), where
Range(f) = max(f) – min(f). For comparison one random function y1,s(m) with another y2,s(m)
corresponding to the chosen parameter s(s = 1, 2,…,S) one can use the following simple formula:

                               ( ) ( )
( ) ( )

1, 2,
1,2

1, 2, 1, 2,

( )
max , min ,

s s

s s s s

Range y Range y
Q s

y y y y
+

=
−

.                                                (16)

This expression in spite of its simplicity is really effective for comparison of the statistical
closeness of a pair random functions belonging to the given/another sampling participating in
comparison operation, when the real behavior of these random functions y1,2,s(m) are not known.
Really, if the function Q1,2(s) is located in the interval [1,2] then the pair random functions are
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statistically close to each other. In the case when Q1,2(s)∈[0,1) one can conclude that the pair random
functions compared are statistically different. Besides this important parameter (16), one can take
into account the symmetry of the random function y1(m). Any random function located in the rectangle
M×Range[y(m)] crosses the line <Pr(m)> coinciding with its mean value. Therefore, for evaluation
of the symmetry of a random function one can introduce the value:

                                               max( ) ( )( )
( ) min( )
y mean ySm y

mean y y
−=
−

.                                                   (17)

If the value Sm(y) is located near the unit value (Sm(y) ≈1) then the line <y> divides the
rectangle M×Range[y(m)] on two almost equal parts. In other cases, the value Sm(y) can be (>,<) 1
determines the measure of asymmetry. After application of expression (16) for comparing of similar
columns (belonging to the same parameter Prs) one can receive finally the vector of the length
S = 13 that contains information about the statistical closeness of two matrices compared. It is
interesting to notice that simple expression (16) can be used also for comparison each successive
measurement with another one in the given rectangle matrix [N×M]. If one compares the vectors ym

forming the columns of the initial matrix with each other then in the result of application (16) one
can obtain the symmetrical matrix U(m1, m2) (m1,2 = 1,2,…, M) with elements located in the
interval 0 < U(m1, m2) < 2. Only elements located in the interval 1 < U(m1, m2) < 2 will correspond
to a «good» experiment; while the elements from the interval 0 < U(m1, m2) < 1 should be considered
as possible «outliers» and correspond to «bad»/unsuccessful measurements.

3. How to find the parameters belonging only to one matrix in order to compare them with
similar parameters of another tested matrix in cases when the reference / «pattern» matrix is absent?
Initially, it is necessary to scale each column to the same interval:

                                                   

( ) ( )

,
1

;

1 1 1; Pr .
2 2

s ss
s

s s

M

s s m s
m

Pr PrDPrPrn
Range Pr Range Pr

Prn Pr
M =

−
= ≡

− ≤ ≤ = ∑                                          (18)

This normalization procedure makes all parameters Prs statistically close to each other with
mean value equaled zero mean(Prns) = 0 and with the Range(Prns) = 1. If one integrates expressions
(18) for each parameter one can receive the statistically different curves JPs = Integral (Prns) for
each initial parameter (s = 1,2,…,S). The distributions of the ranges of these integral curves
P1 = Range(JPs) together with distribution of asymmetries P2= Range(Sm(JPs)) calculated with the
help of expression (17) give finally the matrix containing [S×2] containing (S = 13) rows and two
columns only. For these two functions P1,2 one can add two other functions:

                                           3,4
1

1 , , .
S

s s s s
s

P Y Y Prn JP
S =

⎛ ⎞= =⎜ ⎟⎝ ⎠
∑                                                     (19)

These distributions for the chosen data are shown below in Figs 4-5. If we calculate the ranges
of these 4 columns one obtains finally 4 values only that can characterize the initial matrix [N×M].
If we have a set of matrices [N×M]q (q = 1,2,…,Q) then this simple and general procedure allows to
select the «best» one having minimal values of these 4 key parameters P1, 2, 3, 4. It will characterize
the stability of the initial sequence and their minimal values will serve as a criterion for selection of
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It routs one Analog Input (AI) channel at a time to the ADC, because ELVIS II uses one ADC
for several AI(s). PGIA serves as an abbreviation for the Programmable Gain Instrumentation
Amplifier. The PGIA amplifier attenuates a signal for obtaining the maximum resolution of the
ADC. Analog Input Lowpass Filter is a mandatory block of any ADC, it is necessary to suppress
aliasing phenomenon. Any signal digitization contains anti-aliasing filtering. The passband of the
used filter starts from «zero» Hz to the upper cutoff frequency that equals to the sampling frequency
divided by two. The signal that is passed only through the anti-aliasing filter is defined in this paper
as «unfiltered» signal. One can change the lower and upper cut-off frequencies to the desired values.
After realization of this procedure, a digitized signal should be passed through a digital filter. If a
signal is passing through an additional digital filtering, one can define it as the filtered signal. In this
paper,we consider the filtered signals, non-filtered signals will be considered in another paper.We
connected 50 Ohm resistor between analog input and the «ground». It simulates the output impedance
of the circuit that can be connected to the given ADC. The input signal range has been programmed
and finally the PGIA has a gain equals unit value. Such connection provides the conditions that the
ADC itself becomes the main source of a noise in the presented circuitry. Four different types of
ELVIS II were used in the experiment. In this paper, they are defined as «ELVIS II-L» (L = 1,2,3,4).
Fifteen (m = 1, 2, 3…, M; M = 15) successive measurements were realized using the selected type of
the embedded ADC belonging to the chosen ELVISII-L. Each of these measurements was carried
out with the fixed 50 Ohm resistor at the input (as it was mentioned earlier) and 1.8⋅105 data points
were recorded with a sampling frequency 10 kHz.

the «best» TLS among other TLS(s). We want to notice here that this final stage of treatment of
«big» matrices is differed from the procedure used in paper [6]. Earlier, one of us (RRN) had the set
of rectangle matrices that can be characterized as «normal/reference» ones and compared them with
«strange/tested» matrices associated with defects. Data that will be analyzed below do not contain
this information. Therefore, we propose here more general and common procedure described above
for selection the «best» data expressed in the form of rectangle matrices.

2. Description of the experimental circuitry

ELVIS II workbench by National Instruments was used as ADC. ELVIS II has 1.25 MS/s
(Mega samples per second) maximum sampling rate and 16-bit resolution [21]. As other ADC(s),
ELVIS II contains some circuits for initial signal processing. The simplified block diagram of the
channel for digitizing of an analog signal is shown in Fig. 1. This workbench represents itself an
analog input circuitry. In Fig. 1 the abbreviation «MUX» defines a multiplexer.

Al Lowpass
Filter

Fig. 1. The workbench ELVIS II analog input circuitry:
MUX – multiplexer; PGIA – programmable gain instrumentation amplifier; AILF – analog Input Lowpass Filter;

ADC – analog to digital converter

PGIAMUX
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3. Data treatment algorithm

In the result of the procedure described in the previous section one can receive 4 matrices.
Each rectangle matrix includes N=1.8⋅105 data points and M = 15 successive measurements
corresponding to the chosen «ELVIS II -L» (L =1, 2, 3, 4) workbench. The basic problem is that one
can choose the «best» one among them, best on their TLS data. In our case, the pattern workbench
is absent. In order to solve this problem one can propose the following algorithm. It is divided on the
following steps.

S-1. In order to decrease the computational time associated with treatment of long sequences
(N > 105) one can suggest the procedure of reduction to three incident points that was described and
successfully used earlier in papers [22, 23]. This procedure helps to divide initial TLS on three
independent parts Yupj, Ymnj, Ydnj, where number of data points is compressed j = 1,2,…, [Nc = N/b],
and the compression parameter is equaled b = 300, the rectangle brackets […] determine the integer
part extraction operation. These three obtained random sequences [Yupj, Ymnj, Ydnj ] describe the
distribution of the «up», «mean» and «down» amplitudes, accordingly. This procedure helps to
obtain three similar TLS(s) from the initial sequence as it is illustrated in Fig. 2, where three reduced
TLS(s) for the first sequence (ELVIS II-1) are shown.
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Fig. 2. Results of procedure, which helps to obtain three similar reduced TLS(s) from the initial sequence:
a – on the left-hand side we show the initial trendless noise recorded for «Elvis II-1»

(as an example, we took the first measurement from available M = 15);
b – on the right-hand side we demonstrate the result of reduction to three incident points

(The compression coefficient b = 300. The sequences of the ranged amplitudes (SRAs) are shown by bold black
lines. Noise data recorded for other ELVIS II -2,3,4 is similar and, therefore, other data are not shown)

a                                                                                                    b

S-2. In the result of application of the first step one can prepare 4×[Nc = 1000×M = 15] matrices
corresponding to each «ELVIS II-L» (L = 1, 2, 3, 4). Each device finally can be presented in the
form of one reduced rectangle matrix (based on the calculation of three SRAs shown in Fig. 2)
having the size (15×13) with the help of 3D-DGI method, described in section 2. Each calculated set
combining 13 parameters corresponds as minimum to three surfaces that are defined by equation
(14). The most significant  surface is associated with the behavior of the radius modulus
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In order to save place for the key figures we show only the basic stages and demonstrate the
differences between parameters obtained with the help of expressions (18)-(19). These curves play
a key role in the final comparison of the given workbenches ELVIS II-L = 1, 2, 3, 4, when the
pattern workbench is absent.

The final stage allows to select the «best» ELVIS II-L based on the range values of the parameters
P1,2,3,4. Figure 4, a demonstrates the behavior of the ranges of integrals P1= Range(JPs) for all ELVIS
II -L = 1, 2, 3, 4. Figure 4, b shows the ranges of the asymmetrical coefficients P2= Range(Sm(JPs)).
Definitely, as a criterion we select the «best one» based on their ranges values.
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Fig. 4. Selection of the «best» ELVIS II-L based on the range values of the parameters P1,2,3,4:

a – on the up left-hand side we show the behavior of the parameter P1 expressed in the form of the sequences of the
ranged amplitudes for all ELVIS II-L = 1, 2, 3, 4;

b – on the up right-hand side we place a similar figure for the parameter P2 = Range(Sm(JPs));
c – the behavior of the parameter P3 defined by expression (19) is shown on the down left

(This is averaged value taken over all measurements equaled M = 15);
d – on the right-hand side we show the behavior of the averaged value of the parameter P4. These four parameters

allow to select the most suitable workbench from the available ones based on their minimal values criterion
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The ranges of the parameters P1,2,3,4 allows to select the «best» Elvis II workbench. These four
key parameters are listed in Table 1.

Table 1
In this table all ranges for all key parameters P1,2,3,4 are collected

Analysis of these data show that the first place will belong to ELVIS-II-L = 3, the workbench
ELVIS-II-L = 2 can be selected as the worst one. These parameters are highlighted by the bold line.
The second place in this workbench «competition» can be awarded to the ELVIS-II-L = 4.

Results and discussion

In this paper, we obtained the complete form for the 3D-DGI surface. This surface contains 13
parameters that determine the desired feature space. These parameters, in turn, include the combination
of the moments and intercorrelations up to the fourth order inclusive. From mathematical point of
view, the 3D-DGI method is derived in the result of diagonalization of the fourth-order form. As is
it known that the modern statistics is based on diagonalization of the quadratic forms only and the
moments of the third and fourth order were not taken into account. This method is applicable to
consideration of three arbitrary random sequences having N data points. The selection of an optimal
triple combination (Fig. 2(b)) associated with the chosen random sequence represents a problem
and merits a further research. In this paper, it is reasonable to use the procedure of reduction to three
incident points. However, other options are also possible. Besides the description of 3D-DGI method,
the general reduction procedure is proposed that was proved to be helpful in comparison of «big»
rectangle matrices with each other with the help of expression (16). If all data can be dismembered
onto two parts – «friend-or-foe» the simplest expression (16) becomes efficient, when this division
onto reference/tested data) is possible. If the «pattern»/reference standard is absent then one can use
the procedure based on new expressions (17) – (19). The attentive reader may notice that this approach
can be applied successfully to analysis of different images as well. Really, let us suppose that some
rectangle matrix corresponds to an initial «image». With the help of the 3D-DGI method described
above one can reduce the initial image to an «effective» surface containing for its construction 13
parameters only. This effective surface can serve as an effective «fingerprint» differentiating the
chosen «image» from another one. Besides, this effective image helps an operator/robot in acceptance
of the right decision. This simple idea for its justification and optimization merits the further research.
The TLS data obtained from four ELVIS II workbenches showed the effectiveness of the proposed
method and allowed to select the «best» one (see Table 1).

One of us (RRN) does believe that potential researchers will receive a new original and rather
general tool for treatment and comparison of different TLS data, especially associated with rectangle
matrices having «large» sizes. This method enables to suggest more accurate scheme for classification
of different «color» noises including also Gaussian, heat and flicker-noises based on the unified
platform, containing integer moments and intercorrelations, up to the fourth order, inclusive. One

The workbenches  
(in vertical) and their 
ranges (in horizontal) 

Ranges of P1 Ranges of P2 Ranges of P3 Ranges of P4 

ELVIS II L=1 0.57387 0.46009 0.26714 0.53755 
ELVIS II L=2 11.38654 12.33249 12.53470 3.13543 
ELVIS II L=3 0.20667 0.07926 0.10074 0.20596 
ELVIS II L=4 0.20404 0.08664 0.10725 0.17108 
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can stress here that other platforms of such kind cannot be found and realized, because the analytical
separation of the polynomial forms exceeding the fourth order becomes impossible. Therefore, the
3D-DGI method representing itself a «specific platform» for comparison of random functions is
general and unique. This method opens new horizons in analysis of different random fluctuations/
functions and because of its importance merits a further research.
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МОЖЕТ ЛИ ПРОИЗВОЛЬНЫЙ БЕСТРЕНДОВЫЙ ШУМ
СЛУЖИТЬ НОВЫМ ИСТОЧНИКОМ ИНФОРМАЦИИ?

Р.Р. Нигматуллин, Р.К. Сагдиев

 Казанский национальный исследовательский технический университет
им. А.Н. Туполева-КАИ

Российская Федерация, 420111, г. Казань, ул. Карла Маркса, 10

Аннотация. Авторы хотят доказать, что случайная последовательность без тренда (БТСП) может
быть использована в качестве дополнительного источника информации. Эта дополнительная ин-
формация может быть извлечена из случайного бестрендового шума с помощью метода 3D-DGIs
(3-мерного метода дискретных геометрических инвариантов), который позволяет уменьшить 3N
случайных точек, представленных в форме 3-х БТП до 13 параметров, составленных из комбина-
ции целых моментов и их взаимных корреляций до четвертого порядка включительно. На самом
деле эти параметры образуют «универсальное»  13-мерное функциональное пространство при-
знаков для сравнения одной случайной последовательности с другой. Сравнение параметров, свя-
занных с различными шумовыми дорожками, позволяет использовать этот набор параметров для
калибровки и других целей, связанных со «стандартным» /эталонным оборудованием. В качестве
примера рассматривали измеренные БТСП, полученные с рабочего стола ELVIS II (National
Instrument Corporation). Новый метод помогает найти различия между четырьмя типами предва-
рительно отфильтрованных выборок БТСП (образующих соответствующие прямоугольные мат-
рицы), принадлежащих выбранным АЦП, и выбрать «лучший» из них.
Ключевые слова: Дискретные геометрические инварианты; 13-мерное пространство признаков;
бестрендовые случайные последовательности (БТП); сравнение АЦП на основе БТП.
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