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Abstract. This research proposes a brand-new approach based on the modified POLS (Procedure of the
Optimal Linear Smoothing). The concept is based on an iterative process that consists of two crucial
steps: (a) smoothing an initial trendless sequence successively, and (b) subtracting the smoothed replica
at each iterative step. In terms of the traditional noise/signal ratio, this suggested method enables the
setting of completely new records. At least this ratio as it is estimated on available data is equaled to —
100 dB and even less. Md-POLS formula allows to receive resolution about +3dB and therefore to
detect the presence of the super weak signal. The method is rather universal and can be applied to wide
class of trendless sequences. One requirement is important. The tested sequence should have sufficient
number of stable digits after dividing point. It implies to use ADC with high resolution. It will open
new possibilities in chemistry (detection of different “traces” in the given solutes) and detection of dif-
ferent early-stage diseases, in radio-electronics, in optics where detection of small signals plays a central
role etc.

Key words: RF — random fluctuations; TS — trendless sequence; SWS — super weak signal; SRA —

sequence of the ranged amplitudes; SNR — signal-to-noise ratio, Md-POLS — modified Procedure of the
Optimal Linear Smoothing.

Introduction and formulation of the problem

Under super weak signal (SWS) the author understands small perturbations when their sig-
nal to noise ratio defined as

SNR=10-Ig (wj <—100dB,

Rg (Ts)

Rg(f)=max(f)—min(f).

1)

In this case, the range of the trendless sequence, where SWS can be found, is defined by
Rg(Ts), but the range of the given deterministic signal is determined by Rg(Sgn) in frequency range
Rg(f). Because equation (1) implies the ratio of amplitudes of their quadratic values if the match-

ing ratio of powers is taken into consideration, this formula can be regarded as preferable to con-
ventional ones. It is clear that the detection of weak signals is a major issue in many natural and
technical sciences, and it is actually a "friend-foe" general problem solution also. In medical, this
issue involves converting cardiograms and other recorded data into other (...) grams in order to
detect minor deviations. In chemistry, it is closely linked to the detection of hidden traces in the
given solutes. No sense to innumerate of different radio-electronics and photonic/laser applications
where this problem plays a central role.

Analysis of different publications devoted to this subject shows that the SNR=0 serves as
a specific "red line" dividing the devices with SNR > 0 where the noise influence is suppressed
from the devices with SNR < 0 when the noise influence becomes predominant. To the best au-
thor's knowledge, he did not find in literature the papers where SNR < —60 dB detection of a small
signal inside noisy data is considered (that implies the presence of a signal with the range of am-
plitudes of the order 107 to the range of the noise having the unit order). Highly likely, these types
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of publications are not available in open Internet access. However, papers that are close to the goal
stated in the paper's title need to be reminded of this. It is preferable to group these studies accord-
ing to the SNR value that was attained. The author of the paper [1] based it on Karhunen—Loéve
transformation yielded an SNR of —3dB. The authors of the research [2] assert that if the SNR is
—-5dB, they may extract the signal using the DOA (direction of arrival) approximated approach.
By using unique experimental techniques, the authors of the works [3,5] improved the sensitivity
of common commercial receivers if the SNR falls between 5 and 20 dB. The authors of the research
[4] asserted that they could get a distinct signal for the range of the SNR in the interval [-6.5, 18.5]
dB by using the various locations of satellite signals sensors. The receiver's relative location in
relation to the satellite position has a significant impact on this ratio. Using techniques identical to
those described in paper [4], Chinese scientists obtained acceptable SNR from the several satellites
in the interval [8.7, 19.5] dB in paper [6]. As can be seen from these studies, the authors of the
aforementioned papers were able to detect the presence of weak signals down to —6.5 dB by em-
ploying experimental and signal processing techniques. In this paper the author proposes the com-
pletely new signal processing method that can be used by many researchers working in this area.
It is instructive to formulate the following problem.

Is it possible to detect quantitatively the presence of the SWS when the influence of the
random fluctuations (RF) becomes essential and SNR achieves the unbelievable values —100dB or
even less?

By another words, it means that when the given noise background normalized to the unit
value the level of the signal should have range of amplitudes of the order 10-1° or even less. At-
tentive analysis shows that this problem can be solved and the positive answer will be found. When
a SWS can be discovered, the Md-POLS approach allows the starting ratio to be increased up to
acceptable ratios (SNR [-2,2]). This indicates that the Md-POLS method's "power" allows for a
sensitivity increase of 10-12 orders of magnitude from its original SNR level!

It is preferable to provide a straightforward response to the question posed above in order
to wrap up this section. Under what circumstances might a SWS be detected? Assume that the
level of the initial TS is Rg(Ts)=1 and that the range of a detected signal is initially Rg(Sgn)=

a-10° =10"°. When we enter these values into (1), we get SNR=-10-5 . In this instance, it is

impossible to detect the intended signal. The following minimal value, Rg(Ts)=b-10™" =10" can
be reached by lowering the original TS limit, using expression (2) shown in next section. When

we enter these estimates into (1), we get SNR :10-(ﬁ —§) . Consequently, we arrive to a straight-
forward conclusion. If the embedded SWS satisfies to relationship SNR =10-(ﬁ—§) > 01t is de-

tectable; if SNR =10-(ﬁ—§) <0 it cannot be detected. These straightforward inequalities elimi-
nate any uncertainty regarding the supplied SWS's detection potential.

The solution of the problem

In order to solve this problem, we use the POLS (procedure of the optimal linear smooth-
ing) that it was used earlier [7,8] for elimination of a possible trend located inside a "confidence
tube". The original and previously proposed formula that will be used in this paper is modernized
and can be rewritten in the form:

Y, (wp) = S
() @
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Here w- is the parameter of the window smoothing, p is defined as the acceleration param-
eter. The function K(u) determines the smoothing kernel. In this paper we associate the kernel K(u)
with exponential function that was used earlier in papers [7,8]. For the best author's knowledge
expression (2) is original and never appeared in papers used by other authors. The verification of
expression (2) on available data confirms the following observation, namely; if p lies in the interval
[0,1] then the smoothing process becomes slow, while for the interval [1,6] the smoothing process
accelerates. It is interesting to underscore the limiting values of the window smoothing parameter
w. For w >> 1 the smoothed function Y(w>>1,p) ~ mean(y), while for w—0 Y(w—0,p) ~y and the
smoothing property disappears. Despite its precision, the final limiting case highlights some note-
worthy characteristics that were overlooked in the first place. These characteristics are linked to
the discrete nature of the functions Yj and y; (j=1,2,...,N), which in turn dictates how expression
(2) behaves specifically for p > 1 and at small values of w (near zero), where a specific "competi-
tion™ between small distance Aji and w takes place. Consequently, expression (2) can be used to
verify the suggested challenge (1) and find the desired answer for detection of a SWS.

Verification of (2) on available data

We use the available meteorological data as a noise background. A detailed discussion of
these facts is not required; readers who are curious about them can find it in the study [9]. The
only thing that matters to us about the registration of gases CH4, CO2, and H20 streams in the
atmosphere is that there are enough digits (close to 10) following the dividing point. Fig. 1 demon-
strates the initial TS and SWS that is embedded inside. We distinguish the chosen stream, which
is shown in Fig. 1(a), in order to remove a concealed trend by differentiation procedure. Fig. 1(b)
displays the little signal's particular form.

100 ~

\*Af Super Weak Signal

1,00E-015 4

N
5,00E-016 - a [
it
Afsl
0,00E+000 | éﬁﬁuln l

-5,00E-016 * %

50

Super Weak Signal

-50

Initial sequence without small signal
o

-100

00 05 10 hoosors 00 05 10
0 < x=j/N <1, N=358 x=j/N, N=358
a) b)
Fig. 1. Demonstration the initial TS (a) and the form of the SWS (b) taken in the form of the
wave packet:
(a) we show the trendless sequence TS_0(x) that is considered as initial TS. It has 358 data
points with range of amplitudes Rg=146.7.
(b) then we add to the TS_0(x) a small signal that is depicted as SWS

The functional form of this wave packet is the following:
SWS(x) =[ Acos(wx) + Bsin(wx) [x(1-X). (3)

This wave packet has the following parameters (A=5.21-106, B= 5.55.10"1%, ®=100). We
add this wave packet to initial signal that is shown on Fig. 1 (a). In order to avoid a simple additive
signal, we add this small supplement by nonlinear way
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TS _0(x)-SWS(x) +TS_0(x). @)
Range(TS _0(x))
A tiny additive is present in the trendless sequence provided by expression (4), but it is

TS _1(x) = {SWS(X) +

entirely concealed within it. Since expression (4) graphically coincides with Fig. 1 (a), it is point-
less to illustrate it. The NOCFASS (NOnorthogonal Combined Fourier Analysis of the Smoothed
Signals), which was successfully used in research [10], makes sense since, in our opinion, it is
crucial to improve the informative presentation of the initial signal in Fig. 1 (a). One can utilize
only a portion of the modes situated to the right of the F-spectrum central axis by moving the
traditional F-spectrum to the left n-angle. The shifted F-transformation and the truncated spectrum
are shown by Fig.2. It incorporates on two parts that are shown below.

F-transformation of the TS_0(x)
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Fig. 2. The shifted F-transformation and the truncated spectrum:

(a) we demonstrate the F-spectrum in terms of sizeless modes (0<Vect<358). The central mode is lo-

cated at K/2=179. For the fitting of the TS-0(x) with maximal accuracy (Relative error = 10" %) it is

sufficient to use practically all (237) modes located on the right-hand side of the shifted F-spectrum;
(b) we demonstrate the truncated spectrum 6.32<Qc(k)<1499.15 that provides the desired fit.

In Fig.3 we demonstrate the fit of the initial signal, realized in the frame of the NOCFASS.
It includes also the amplitudes modulus and phases distributions, respectively.
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Fig. 3. The fit of the initial signal TS_0(x), realized in the frame of the NOCFASS:
(a) we demonstrate the fit of TS_0(x) realized with exceptional accuracy (Rel.err = 107 %);
(b) we show the modulus amplitude distribution Amd, =/Ac? + As? for this TS;

c) we show the phase distribution Ph,=tan"}(Asi/Ack). The solid red line shows the sequence of the
range amplitudes (SRA). As one can see from this figure it is expressed by the segment of the
stright line. It means that the phase distribution Phy coincides practically with uniform distribution
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The fitting function is given by conventional expression
K
F(X)= A+ D [ Ac, cos(Qc(k)-x)+ As, sin(Qc(k)-x) | =
k=1
K
= A, + Y [ Amd, cos(Qc(k)-x—Ph, )]
k=1

Amd, =,/Ac? + As?, Ph =tan™ (%j\

Ck
k
Qc(k) = Qc(0) +R(QC(K) -Qc(0)),

0c(0) =6.32, Qc(K) =1499.15.

In the same manner we treat the TS-1(x) with small supplement. The details are shown

Fig.4.

()

by

In Fig.4 below we demonstrate the fit of the initial signal, realized in the frame of the
NOCFASS. It includes also the amplitudes modulus Amd, =./Ac? + As? and phases distribution
Phi=tan™(As/Ack), respectively. All these three figures contain the deformed SWS that is shown

in Fig.1(b) above.
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Fig. 4. The fit of the initial signal TS_1(x), realized in the frame of the NOCFASS:
(a) we demonstrate the fit of TS_1(x) realized with same exceptional accuracy (Rel.err = 10714 %);

(b) we show the modulus amplitude distribution Amd, =/ Ac? + As? for this TS;

(c) we show the phase distribution Phi=tan"}(Asw/Ack). The solid red line demonstrates the
sequence of the range amplitudes (SRA). As one can notice again that it is expressed by the
segment of the stright line. It means that the phase distribution coincides practically with
uniform distribution

Now we have two important informative plots Amdx and Phy (depicted in fig. 3 and fig. 4)

that should be compared with each other in terms of expression (2). As it has been mentioned
above the principle of application (2) can be expressed by the following algorithm: "smooth —
subtract".

Let us consider firstly the comparison of the modulus Amd, = \/Ac? + As? and Phy distri-
butions, accordingly, in the frame of expression (2). For certainty, we put p=2, F coincides with
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Fig.5 demonstrates the ranges distributions vs. the smoothing parameter w for modulus
amplitudes and phases, respectively; for the curves with SWS (connected red balls) and without
SWS (marked by the connected black squared)

—a— Ranges Distribution for modulus amplitudes (TS_0(x))

N . —=— Ranges distribbutions for the phases (TS-0(x))
—e— Ranges Distribution for modulus amplitudes (TS_1(x))

—e— Ranges distribbutions for the phases (TS-1(x))
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Ranges distributions for the phases

0,00
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0 2 4 6 8 10 0 2 4 6 8 10
1< w (smoothing window) <10 1<w<10
a) b)

Fig. 5. The ranges distributions vs the smoothing parameter w
for modulus amplitudes and phases:

(a) It is shows the ranges distributions behavior with respect to the value of the smoothing

window that is located in the interval w €[1,10]. The black connected squared refers

to the TS_0(x) and red connected balls to the TS_1(x). The differences between these

curves are noticeable;
(b) The same behavior is similar for the Ranges distributions of phases. However, the most
interesting region for detection of the SWS is located in the interval [0,2]. It is separated
on the figure (a) by two bolded vertical lines

Let us put w=1.01. Figure 6 demonstrates this result at small values of the w=1.01.

—ae— The difference
—e— The smoothed replicas for Amd(k)-TS_0(x) between amplitudes replicas
—<+— The smoothed replicas for Amd(k)-TS_1(x)
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Fig. 6. Demonstration of operation result at small values of the w=1.01:
(a) we put together the smoothed replicas of Amd. (w=1.01);
(b) the difference between them is shown. It is convenient to compare the result of Md-POLS
method in terms of SNR (initial (as a priori estimated) and final one) that is given
by expression (1). The successive increasing of the SNR is given in Table 1
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Table 1. The values of SNR achieved in the result of Md-POLS application

w SNR for Amdx SNR for Phy
3.0 0.881 0.091
2.0 0.888 0.092

1.01 3.011 0.127
1.0 0.0 0.173
0.9 0.0 0.0

limit (w=0.9) for detection of the presence SWS in the given TS.

The smoothed replicas for the Phases

Comments. As one can notice from these results the value of the smoothing window w=1.01 is the
critical one. Slightly changing of this value shows the limit for SNR resolution related to amplitudes mod-
ules and demonstrates the limit (w=1.0) for SNR (Phy). This table demonstrates also a specific "digital"

In Fig.7 we demonstrate the phase distributions for the TS with SWS and without
one together with the differences between them.
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—a— The replica for the Phase distribution (TS_0(x))
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window w=1.01 h
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Fig. 7. Phase distributions for the TS with SWS and without one together
with the differences between them:

(a) We put together the smoothed replicas for the Phases distribution Phy (w=1.01);

(b) The difference between is convenient to compare the result of Md-POLS method in terms

of SNR (initial (as a priori estimated) and final one) that is given by expression (1).

The successive increasing of the SNR is given in Table 1 shown above.

We chose the TS with expected SNR (after embedding a small signal) into TS_0(x) equaled
to —169.87. The corresponding TS is shown in Fig. 1 (a).
The following statement is worth emphasizing. Every TS with an identical incorporated
SWS has a unique sensitivity. As an illustration, we use TS with SNR (expected)= —166.01.

The calculated results for another TS are shown below in Table 2.

Table 2. The values of SNR achieved in the result of Md-POLS application for another TS

w SNR for Amdx SNR for Phg
3.0 -1.257 0.351
2.0 -1.259 0.352
1.02 -3.011 -0.337
1.01 0.0 -1.251
0.9 0.0 0.0
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Results and Discussion

In this section we should emphasize some attractive features of the Md-POLS method.

1. It makes to identify a possible SWS that could be hidden inside the designated TS. It is
sensitive to the number of fixed digits after the division point.

2. It must be detected by raising the initial SNR (anticipated value) by many orders of
magnitude, which corresponds to the SWS (expected value). One can surpass the 16-order-of-
magnitude limit in the instance under consideration. It indicates that for the specified TS, the SNR
may be increased from —160 dB up to +3 dB or even more. The Md-POLS technique becomes an
essential tool for recognizing a broad class of disguised SWS as a result of this real data.

3. It is necessary to emphasize the following peculiarity of this method that was found
during these numeric calculations. Each TS has its own sensitivity for detection of the SWS. In
order to "percept" it we demonstrate the following pictures.

Fig. 8 demonstrates some interesting features in their behavior at the small values of the
smoothing parameter w.
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Fig. 8. Behavior of expected SNR ratio. TS is near —160 dB:

(a) one can see the behavior of the final SNR with respect to the value of the smoothing win-
dow in the small interval [0.9-1.2] close to zero. This behavior was calculated for the Amdk;
(b) similar plot is given for the phases Ph ratios calculated for the same interval [1.0-1.2].
One can notice that this behavior is not uniform. There are regions where SNR achieves
maximal value as 6 dB (on the left) and 1.7 dB (for the right plot).

Let us take another TS. This TS is randomly taken from the given data. Initial expected SNR
ratio is — 166 dB. Similar plots for this chosen sequence are shown on Fig. 9. Fig. 9 demonstrates
some interesting features in their behavior at the small values of the smoothing parameter w. It is
taken another TS for comparison with Fig.8.
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Figs. 9: Behavior of expected SNR. TS is near —166 dB:

(a) one can see the behavior of the final SNR with respect to the value of the smoothing win-
dow w in the same small interval [1.0-1.2]. This behavior was calculated for the Amd;
(b) Similar plot is given for the phases Ph distribution ratios.

One can notice that this behavior is not uniform and does not coincide with Fig. 8 (a, b).
There are own regions where SNR achieves maximal value as 3 dB (a) and 1.9 dB (b)

The final sensitivity of any chosen TS to detect the SWS embedded within it is determined
by the particular distributions of the close amplitudes and phases, as can be seen from a comparison
of the last figures.

These obtained results prompt to make the following basic conclusion. Special attention
should be paid to obtaining a stable background (reproducibility of an experiment plays a crucial
role!) serving as a particular detector to record any small signal that may appear outside the con-
fidence "tube™ of the background due to an uncounted SWS. This recorded perturbation can assist
in detecting the desired "signal” that separates the new "quality" from the random fluctuations
contained within the "reference™ background.

The author sincerely hopes that this knowledge on this intriguing technique will lead to
new opportunities for the detection of a broad class of different SWS in many natural disciplines.
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BO3MO’KHO JIU OBHAPYKUTb HAJIMYUE CBEPXCJIABOI'O
CUT'HAJIA B HEKOTOPOM
MNOCJIIEAOBATEJIBHOCTU BE3 TPEHIA?

P. P. Huzmamynaun

KazaHckuil HaMOHAJIBHBIN UCCIIEN0BATEIBCKUI TEXHUUECKUN YHUBEPCUTET
uM A.H. Tynonesa-KAU,
kadeapa paguodJeKTPOHUKH U UHPOPMAIIMOHHO-U3MEPUTETHLHON TEXHUKHI
420111, Poccuiickas ®enepanus, r. Kazans, yn. K. Mapkca, 1. 10

AnHoTanus. B nanHo# paGote mpearaercs MPUHIUIIMAIBHO HOBBIM MOAX0]] HA OCHOBE OOHOBJICH-
Ho# meroauku POLS (Procedure of the Optimal Linear Smoothing). Konuenius ocHoBaHa Ha uTepa-
THUBHOM IIPOIIECCE, KOTOPBIA COCTOUT M3 JABYX BRKHEHIINX IIAaroB: (@) IOCIeJOBaTEILHOTO CriIayKUBa-
HUS NCXOTHOI OecTpeHI0BOI IToCIIe10BATEIbHOCTH 1 (0) BBIYUTAHUS CTIIQ)KEHHOH PETUIMKY Ha KaXKIOM
utepaTuBHOM mare. C TOYKH 3peHHs TPAJAUIMOHHOTO COOTHOLIEHUS [IIyM/CUTHAJ TIpeyularaeMblii Me-
TOJ] IO3BOJISIET YCTAHABIMBATh COBEPIICHHO HOBBIE peKopbl. [1o kpaiiHeit Mepe, 3TO coOOTHOLIEHHE, 110
umerorumes aanueiv, cocrasisier —100 dB u naxe menbine. Ota popmyna Md-POLS nozsosnsier no-
Jy4uTH pasperierne okoio +3 dB u, cienoBarensHo, 00HAPYKUTH Hamare SWS. MeTo 10cTaTouHo
YHHUBEPCAJICH ¥ MOKET OBITh IPUMEHEH K IUPOKOMY KJIacCy IMOCieA0BaTeIbHOCTEH Oe3 TpeHaa. BaxkHo
onHO TpeboBanme. TecTupyemas MOCIEOBATENBHOCTE TOJDKHA UMETh JOCTATOYHOE KOJMYECTBO CTa-
OMIBHBIX (P Moce TOYKH JeNeHusI. JTO moapa3yMeBaeT ncnoib3oBanue ALIIl ¢ BEICOKHM paspe-
IIEHHEeM. DTO OTKPOET HOBBIE BO3MOXXHOCTH B XUMHHU (OOHAPYKECHHE PAa3IMUHBIX «CJIEJIOB» B TaHHBIX
pacTBopax) U OOHApYKEHHE PAa3TMYHBIX 3a00JIeBaHII HA paHHEH CTalnH, B PaAHOdICKTPOHUKE, B OII-
THKE, TJie OOHapy)KEHHE MaJIIX CUTHAJIOB UTPACT HEHTPAIBHYIO POJIb U T. 1.

KuaroueBble ciioBa. RF- ciyuaiinbie konebanus; TS- nocnenoBaTeabHOCTh 0e3 Tpenaa; SWS- cBepx-
cmabbiii curaan, SRA- mociemoBaTeabHOCTh PAHXHUPOBAaHHBIX amiuuTyd; SNR- oTHOmIIeHHE cur-
Han/inym; Md-POLS — MozepHr3upoBaHHas MPOLIEAypa ONTUMAJIBHOIO INHEHHOTO CIIIayKHBAHMS.

CraTbs npencTasieHa B penakuuio 21 nexadps 2024 r.
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