EDN: DNZXLC УДК 535.14 2.2.6, 2.2.7

ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ПРОТОКОЛА БЫСТРОЙ КВАНТОВОЙ ПАМЯТИ НА ОТДЕЛЬНОМ АТОМЕ В РЕЗОНАТОРЕ В УСЛОВИЯХ ОПТИМИЗИРОВАННОГО КОНТРОЛИРУЮЩЕГО ПОЛЯ

Ю.А. Харламова

Казанский национальный исследовательский технический университет имени А.Н. Туполева-КАИ Российская Федерация, 420111, Казань, К. Маркса, 10

Аннотация. Теоретически исследована схема квантовой памяти на отдельном трехуровневом атоме в высокодобротном резонаторе. Исследовано влияние атомной релаксации и потерь в резонаторе на эффективность загрузки фотона на долгоживущие атомные состояния. Полученные результаты показывают возможность выбора новой оптимальной временной формы контролирующего лазерного импульса, что позволяет достичь эффективности загрузки 31,1% в неадиабатическом режиме взаимодействия фотона с атомом при использовании экспериментально реализованных параметров схемы квантовой памяти.

Ключевые слова: фотон, трехуровневый атом, резонатор, квантовая память.

1. Введение

Реализация распределенных квантовых вычислений основана на передаче фотонных кубитов между удаленными узлами квантовой сети [1-4]. Интегральные волноводные схемы предлагают многообещающую платформу в управлении передачей и квантовой обработкой фотонных кубитов, где использование квантовой памяти может значительно расширить их функциональность [5-7]. Быстрая (неадиабатическая) квантовая память обеспечит более высокую скорость работы и более высокую устойчивость к атомной декогеренции и потерям в резонаторе. Было показано, что в неадиабатическом режиме взаимодействия фотона с атомом при отсутствии атомной декогеренции и потерь в резонаторе (необратимых потерь) может быть достигнута эффективность сохранения фотона до 63%, а с учетом эффектов необратимых потерь, эффективность переноса фотонов снизилась до 25% [8], имеющих место в экспериментальной работе [9]. Последние экспериментальные результаты продемонстрировали эффективность 8,1% [10], что делает актуальным поиск новых методов, способных повысить эффективность быстрой квантовой памяти. Целью работы является разработка теоретической модели ячейки квантовой памяти на отдельном атоме в резонаторе и оптимизация ее методов управления с целью достижения высокой эффективности в условиях экспериментальных параметров.

2. Описание модели квантовой памяти

Рассматриваемая схема быстрой квантовой памяти содержит трехуровневый атом в высокодобротном резонаторе, который соединен с внешним волноводом (рис.1). Однофотонный волновой пакет $a_{in}(t)$ передается через волновод в высокодобротный резонатор, настроенный на частоту ω_{31} оптического перехода атома $|1\rangle \leftrightarrow |3\rangle$, которая также близка несущей частоте фотонного волнового пакета ω_l . Частота контролирующего лазерного импульса ω_{Ω} выбирается равной частоте ω_{32} смежного резонансного атомного перехода $|2\rangle \leftrightarrow |3\rangle$ и не совпадает с частотами резонатора.

Рис. 1. Принципиальная схема быстрой квантовой памяти. На вставке показаны атомные состояния и квантовые переходы

Взаимодействие фотона с атомом в высокодобротном резонаторе описывается следующим Гамильтонианом квантовой оптики:

$$H = H_a + H_c + H_f + V_{a\Omega} + V_{ac} + V_{fc.}$$
(1)

Где H_a = $\sum_{m=2}^{3} \hbar \omega_{m1} \hat{P}_{mm}$ – Гамильтониан трехуровневого атома (ω_{m1} – частота атомного перехода $|m\rangle \rightarrow |1\rangle$),

 $H_c = \hbar \omega_c \hat{a}_c^+ \hat{a}_c - \Gamma$ амильтониан моды резонатора (ω_c – частота резонатора),

 $H_f = \int_0^\infty df \, \hbar \, \omega \hat{a}_f^+ \hat{a}_f - \Gamma$ амильтониан волноводной моды,

 $V_{a\Omega} = \hbar \{ \Omega_0(t) \hat{P}_{32} e^{i[\omega_{\Omega}t + \varphi(t)]} + h. c. \} - \Gamma$ амильтониан взаимодействия атома с контролирующим лазерным полем, характеризующимся частотой Раби $\Omega_0(t)$ и фазой $\varphi(t)$ поля, связывающего атомные состояния $|2\rangle$ и $|3\rangle$,

 $V_{ac} = \hbar g(\hat{a}_c \hat{P}_{31} + \hat{a}_c^+ \hat{P}_{13}) - \Gamma$ амильтониан взаимодействия атома и резонатора (*g* – константа связи взаимодействий атом-мода резонатора) и

 $V_{fc} = \hbar \int_{0}^{\infty} df \; (g_{cf} \hat{a}_{f}^{+} \hat{a}_{c} + h.c) - \Gamma$ амильтониан связи между модой резонатора и волноводными модами, где g_{cf} – константа взаимодействия моды резонатора и волноводной моды.

В представлении Шредингера поведение исследуемой квантовой системы описываем волновой функцией:

$$|\psi(t)\rangle = \left\{ a_c(t)\hat{a}_c^+ + b(t)\hat{P}_{21} + S(t)\hat{P}_{31} + \int d\omega \ f_\omega(t)\hat{a}_\omega^+ \right\} |1\rangle \otimes, \tag{2}$$

где $a_c(t)^2$ – амплитуда вероятности возбуждения резонаторной моды,

 $|S(t)|^2$ – амплитуда вероятности возбуждения атома,

 $|b(t)|^2$ – амплитуда вероятности переноса возбуждения на долгоживущий уровень $|2\rangle$.

В начале взаимодействия атом и мода резонатора приготавливаются в основном состоянии (возбуждение в резонаторной моде отсутствует, а атом подготовлен в основном состоянии $a_c(t) = 0$, b(t) = S(t) = 0). Попадая в резонатор, фотон переводит возбуждение атома на уровень |3), а контролирующее поле $\Omega_o(t)$ переводит возбуждение атома с уровня |3) на долгоживущий уровень |2). Используя волновую функцию (2) в уравнение Шредингера с Гамильтонианом (1), получаем уравнения для медленно меняющихся амплитуд:

$$\frac{d}{dt}S = -(i\Delta_s + \gamma_s)s - i\Omega_o(t)e^{-i\varphi(t)}b - iga_c$$
(3)

$$\frac{d}{dt}b = -(i\Delta_b + \gamma_b)b - i\Omega_o(t)e^{i\varphi(t)}S,$$
(4)

$$\frac{d}{dt}a_c = -\left(i\Delta_c + \kappa\frac{1}{2} + \kappa_{loss}\frac{1}{2}\right)a_c(t) - igS + \sqrt{\kappa}a_{in}(t),\tag{5}$$

где: $a_c = a_c(t)e^{i\omega_l t}, S = S(t)e^{i\omega_l t}, b = b(t)e^{i(\omega_\Omega - \omega_l)t}, a_{in} = a_{in}(t)e^{i\omega_l t} = -i\frac{g_{cw}}{\sqrt{\kappa}}e^{i\omega_l t}\int d\omega f_{\omega}(t_0)e^{i\omega(t-t_0)}$, учтена нормировка $\int dt a_{in}(t) a_{in}^*(t) = 1$, так что $\int d\omega |f_{\omega}(t \to -\infty)|^2 = 1, \kappa = 2\pi |g_{cw}|^2$ – константа связи резонатора с волноводом, $\Delta_s = \omega_{31} - \omega_l, \Delta_b = (\omega_{21} + \omega_\Omega - \omega_l), \Delta_c = \omega_c - \omega_l, \Omega_o(t)$ – частота Раби, $\varphi(t)$ – фаза управления лазерным полем, связывающим атомные состояния $|3\rangle$ и $|2\rangle$. В уравнениях (3) - (5) введены константы атомного затухания γ_s, γ_b и затухание моды резонатора κ_{loss} .

3. Исследование эффективности квантовой памяти в условиях отражения

Для дальнейшего анализа выбран импульс Гауссовой формы, описываемый как: $a_{in}(t) = \sqrt{\frac{\Delta_f}{\sqrt{\pi}}} e^{-\frac{1}{2}(\Delta_f t)^2}$. Быстрая квантовая память соответствует параметру неадиабатичности Y=0.57 [8], где $Y = \frac{\gamma_s C}{\sqrt{2}\Delta_f}$, $C = \frac{g^2}{\gamma_s(\kappa + \kappa_{loss})}$ – кооперативность (величина, характеризующая связь между модой резонатора и атомом). Параметр $\gamma_b \cong 0$, g = 4.9Мгц [8,9], параметр Δ_f связан с κ следующим образом: $\Delta_f = \frac{g^2}{0.57\sqrt{2}(\kappa + \kappa_{loss})}$. Далее все параметры приводятся в единицах g. Эффективность квантовой памяти оценивается, используя параметры экспериментальных установок [9,10] с атомом рубидия ⁸⁷Rb [10] и оптического резонатора Фабри-Перо.

3.1. Случай пренебрежимо малых необратимых потерь

В предыдущих работах [8, 10] авторы определяют оптимальный импульс $\Omega(t,$ который подавляет обратное отражение от резонатора (накладывая условие $a_{out}(t) = 0$ в решении системы дифференциальных уравнений). Для этого предполагается, что поле резонатора резонирует с переходом $|1\rangle \rightarrow |3\rangle$ и частотная отстройка $\Delta_S = 0$. Однако, данная форма импульса оптимальна для адиабатического режима, в то время как в условиях неадиабатической динамики форма контролирующего лазерного импульса нуждается в оптимизации для получения более высокой эффективности и экспериментальной реализации.

Оптимизированная нами форма контролирующего импульса для быстрой квантовой памяти описывается как $\Omega(t) = \Omega_0(t)F(t)$, где F(t) - функция включения, $F(t) = \sqrt{\frac{1}{2}}(1 + Erf[\Delta_{f^2}(t - t_2), что соответствует вероятности сохранения фотонного пакета в резонаторе с атомом: <math>P_{a+c}(\Delta_f, t) = |b(t)|^2 + |S(t)|^2 + |a_c(t)|^2 = \frac{1}{2}(1 + Erf(\Delta_f t))$ в случае отсутствия отражения фотона. Изменяя параметры Δ_{f^2} и t_2 можно управлять временем и шириной включения контролирующего импульса и оптимизацией экспериментальной реализации. Возможная область изменения параметра κ в случае учета отражения и пренебрежимо малых потерь $\kappa \in [0.7; 3.75]$.

Из результатов численного моделирования (таблица 1) следует, что наибольшая эффективность переноса на долгоживущий уровень наблюдается при наименьших возможных параметрах Δ_{f2} функции включения. От величины Δ_{f2} зависит скорость включения контролирующего поля: чем Δ_{f2} меньше, тем плавнее включение, что влияет на эффективность сохранения фотона на долгоживущий уровень $|2\rangle$, определяемой вероятностью $|b(t_1)|^2$. Также на плавность формы контролирующего поля влияет момент времени t_2 : для κ , при которых можно выбрать наибольшее значение t_2 с наименьшим значением Δ_{f2} наблюдается наиболее плавная форма, однако, максимальная эффективность достигается по-прежнему при наименьшем возможном t_2 . Для параметров $\kappa \in [2.8; 3.75]$ наблюдается высокая эффективность (~99,999%) при большем выборе параметров t_2 , что делает их предпочтительными в силу того, что имеется возможность включить контролирующее поле позже, обеспечивая плавность его формы (рис. 2).

										Таблица 1
κ	Δ_f	t_2	Δ_{f2}	$ b(t_1) ^2$		κ	Δ_f	t_2	Δ_{f2}	$ b(t_1) ^2$
1.4	0.88	0.7	15	0.7		3.1	0.4	-8	5	0.999999
2	0.62	-1.6	15	0.9773				-8	8	0.999999
		-1.6	17	0.977				-6	2	0.99996
		-1.4	10	0.97		3.2	0.388	-9	4	0.9999999
		-1.4	12	0.969				-8	3	0.999999
2.5	0.49	-4	10	0.999				-5	2	0.9997
		-4	13	0.999		3.5	0.35	-10	2	0.99999
		-3	4	0.996]	2 75	0.24	-14	2	0.99999
2.9	0.42	-7	11	0.99999		5.75		-10	1	0.99999

Рис. 2. Динамика квантовой памяти

а) $\kappa = 3.2, \Delta_f = 0.388, t_2 = -9, \Delta_{f^2} = 4, |b(t_1)|^2 = 0.9999999,$ б) $\kappa = 3.2, \Delta_f = 0.388, t_2 = -4, \Delta_{f^2} = 0.7, |b(t_1)|^2 = 0.999. \Omega_0(t)$ – контролирующее поле (черный цвет), $|b(t)|^2$ – амплитуда вероятности переноса возбуждения на долгоживущий уровень |2⟩ (синий цвет), $|S(t)|^2$ – амплитуда вероятности возбуждения атома (зеленый цвет), $a_c(t)^2$ – поле в резонаторе (красный цвет), $a_{in}(t)^2$ – входной импульс (фиолетовый цвет)

Важно отметить, что при значениях $\kappa \in [2.5; 3.75]$ присутствие отражения от резонатора не влияет на эффективность, она остается такой же высокой (>99.99%), как и в случае отсутствия отражения, что говорит о том, что снижение эффективности происходит изза потерь системы.

3.2. Случай учета атомной декогеренции и потерь резонатора

Для экспериментальной реализации необходимо учитывать, как наличие отражения, так и наличие необратимых потерь системы. В ходе численного моделирования рассмотрена эффективность переноса возбуждения на долгоживущий уровень |2) с контролирующим лазерным импульсом с функцией включения $\Omega(t)$ и наличием потерь в системе: $\kappa_{loss} = 0.067$ – потери резонатора, $\gamma_s = 0.618$ – атомная декогеренция (в единицах g) в зависимости от параметров κ , Δ_f , Δ_{f2} , t_2 (таблица 2).

						Таблин				Габлица 2
κ	Δ_f	t_2	Δ_{f2}	$ b(t_1) ^2$		κ	Δ_f	t_2	Δ_{f2}	$ b(t_1) ^2$
1.7	0.7	1.2	8	0.118		2.265	0.531	-3.1	25	0.264
1.8	0.66	1.1	4	0.126		2.2675	0.531	-3.1	24	0.265
1.9	0.63	-0.2	5	0.21		2.268	0.531	-3.1	24	0.266
		-0.1	5	0.207		2.269	0.531	-3.15	23	0.265
2	0.6	-1.6	15	0.24		2.275	0.53	-3	16	0.261
		-1.5	12	0.234		2.28	0.528	-3.2	28	0.271
2.1	0.57	-2	15	0.235		2 2 2 5	0.527	-3.25	31	0.276
		-1.9	15	0.229		2.203		-3.2	25	0.273
		-1.9	9	0.23		2.29	0.526	-3.3	35	0.28
2.2	0.54	-2.6	16	0.243		2.295	0.525	-3.4	59	0.287
		-2.5	13	0.237		2.3	0.524	-3.45	75	0.292
2.25	0.534	-3	24	0.258		2.31	0.521	-3.5	69	0.311
		-2.5	8	0.236				2.4	22	0.200
2.26	0.533	-3	20	0.259				-3.4	- 33	0.309

ФОТОНИКА | Электроника, фотоника и киберфизические системы. 2025. Т.5. №1

Возможная область параметров для κ в случае учета отражения и потерь системы $\kappa \in [1.7; 2.31]$. В этом случае максимальная эффективность (рис. 3) достигается при наибольшем возможном $\kappa = 2.31$, где более раннее время включения t_2 контролирующего поля обеспечивает наибольшую эффективность, но при этом, мы ограничены в выборе параметра Δ_{f2} для плавности включения поля.

Рис. 3. Динамика квантовой памяти

a) $\kappa = 2.1, \Delta_f = 0.57, t_2 = -2, \Delta_{f2} = 15, |b(t_1)|^2 = 0.235,$

б) $\kappa = 2.31, \Delta_f = 0.521, t_2 = -3.5, \Delta_{f^2} = 69, |b(t_1)|^2 = 0.311. \kappa_{loss} = 0.067$ (в единицах g), $\gamma_s = 0.618$ (в единицах g). $\Omega_0(t)$ – контролирующее поле (черный цвет), $|b(t)|^2$ – амплитуда вероятности переноса возбуждения на долгоживущий уровень |2⟩ (синий цвет), $|S(t)|^2$ – амплитуда вероятности возбуждения атома (зеленый цвет), $a_c(t)^2$ – поле в резонаторе (красный цвет), $a_{in}(t)^2$ – входной импульс (фиолетовый цвет)

4. Структуры и материалы для реализации ячейки быстрой квантовой памяти

Для данной теоретической модели быстрой квантовой памяти предполагается использование следующих структур для будущей экспериментальной реализации: охлажденный атом ⁸⁷Rb с параметром связи g = 4.9 МГц [8-10], помещённый в оптическую или магнитную ловушку внутри резонатора, созданную двумя парами лазерных пучков на длине 860 нм [10]. Для высокодобротного резонатора необходимо использовать зеркала с низкими внутренними потерями. Такой резонатор представляет собой полупрозрачную оптическую резонаторную структуру, которая позволяет эффективно взаимодействовать с отдельным атомом, помещенным в резонатор. Материалы зеркал обычно состоят из стекла или кварца [12,13] с нанесёнными на их поверхности отражающими покрытиями из металлов или диэлектрических слоёв, обеспечивающих высокое отражение и минимальные потери [9].

5. Заключение

Описана теоретическая модель ячейки быстрой квантовой памяти. На основе аналитического и численного анализа системы уравнений было проведено сравнение импульса Гауссовой формы в случаях пренебрежимо малых потерь системы, а также в случае присутствия потерь системы. Предложена оптимизированная форма контролирующего лазерного импульса, позволяющая увеличить эффективность быстрой квантовой памяти.

Показано, что в случае пренебрежимо малых потерь, отражение в системе не влияет на эффективность для определенной области параметров κ , где эффективность составляет более 99 %, что значительно превосходит достигнутые ранее 63% [8]. Наличие потерь в системе значительно сужает область возможных параметров κ и наиболее сильно влияет на снижение эффективности, причем, наибольшую долю вносят потери, связанные с атомной декогеренцией γ_s . Эффективность переноса возбуждения на долгоживущий уровень в этом случае составляет 31,1%, что выше достигнутых ранее результатов 9-25% в работах [8-10].

6. Благодарность

Автор выражает благодарность Моисееву С.А. и Арсланову Н.М. за полезные обсуждения и советы при проведении данного исследования.

Список литературы

1. Kimble H. J. Source of hidden correlations in quantum mechanics /H.J. Kimble // Nature. – 2008. – V. 453. – P. 1023.

2. Ritter S. An elementary quantum network of single atoms in optical cavities /S. Ritter et al.// Nature. -2012. - V. 484. - P. 195379.

3. Xu F. Quantum communication with photonic qubits / F. Xu et al. // Reviews of Modern Physics. – 2020. – V. 92. – P. 025002.

4. Nguyen C.T. On-demand quantum state transfer between distant atomic ensembles / C.T. Nguyen et al. // Physical Review Letters. – 2019. – V. 123. – P. 183602.

5. Cirac J.I. Quantum state transfer and entanglement distribution among distant nodes in a quantum network / J.I. Cirac et al. // Phys. Rev. Lett. – 1997. – V. 78. –P.3221.

6. Bhaskar M.K. Experimental demonstration of memory-enhanced quantum communication /M.K. Bhaskar et al. // Nature. -2020. - V.580. - P.60-64.

7. Meher N. A review on quantum information processing in cavities / N. Meher, S. Sivakumar // The European Physical Journal Plus. -2022. - V. 137.

8. Giannelli L. Optimal storage of a single photon by a single intra-cavity atom / L. Giannelli et al. // New J. Phys. -2018 - V. 20. -P. 105009.

9. Körber M. Decoherence-protected memory for a single-photon qubit / M. Körber et al. // Nature Photonics. – 2018. – V.12. – P. 18-21.

10. Macha T. Nonadiabatic storage of short light pulses in an atom-cavity system / T. Macha et al. // Phys. Rev. A. -2020. - V. 101. - P. 053406.

11. Fleischhauer M. How to trap photons? Storing single-photon quantum states in collective atomic excitations / M. Fleischhauer et al. // Optics Communications. – 2000. – V.179. – P.395-410.

12. Jalali B. Silicon Photonics / B. Jalali et al. // Journal of Lightwave Technology. –2006. – V. 24. – P. 4600-4615.

13. A. Lim et al. Review of silicon photonics foundry efforts // IEEE Journal of selected topics

in quantum electronics. – 2014. – V.20. – P.405-416. STUDY OF THE EFFECTIVENESS OF A FAST QUANTUM MEMORY PROTOCOL ON A SINGLE ATOM IN A RESONATOR UNDER CONDI-TIONS OF AN OPTIMIZED CONTROL FIELD

Yu.A. Kharlamova

Kazan National Research Technical University named after A.N. Tupolev-KAI 10, K. Marx, Kazan, 420111, Russian Federation

Abstract. A quantum memory scheme on a separate three-level atom in a high-quality resonator is theoretically investigated. The influence of atomic relaxation and resonator losses on the efficiency of photon loading into long-lived atomic states is investigated. The obtained results show the possibility of choosing a new optimal time shape of the controlling laser pulse, which allows achieving a loading efficiency of 31.1% in the non-adiabatic mode of photon-atom interaction using experimentally implemented parameters of the quantum memory scheme.

Keywords: photon, three-level atom, resonator, quantum memory.

Статья представлена в редакцию 1 марта 2025г.