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Введение 

Высокоточное измерение скорости и направления потока в трубопроводах                               

в условиях взрывоопасности, электромагнитных помех (EMI) и агрессивных сред является 

критической задачей для нефтегазовой и химической промышленности, а также бортовых 

систем летательных аппаратов [1]. Настоящий анализ рассматривает применение 

волоконно-оптических технологий (ВОТ) для мониторинга в реальном времени указанных 

параметров за период 2011–2025 гг., фокусируясь на метрологических характеристиках и 

перспективах внедрения. 

Анализ методов измерения скорости потока жидкости 

Точечные волоконно-оптические методы контроля скорости потока, включая 

лазерную допплеровскую велосиметрию (LDV) и анемометры на основе волоконно-

брэгговских решёток (ВБР), реализуют локальные измерения через допплеровский сдвиг 

частоты, вызванные нагревом, что позволяет достигать разрешения 0,012 м/с для 

прозрачных сред, но ограничиваться оптической прозрачностью жидкости и 

чувствительностью к рассеянию, а также требует регулярной калибровки в агрессивных 

средах [2]. Тепловые анемометры на волоконно-брэгговских решётках (ВБР) используют 

джоулев нагрев для регистрации охлаждения потоком, достигая чувствительности 0,091 

нм/(м/с) при скоростях до 2,5 м/с и энергопотреблении до 60 мВт/м. Однако они 

подвержены засорению и требуют температурной компенсации при температурах выше   

100 °C [3]. Интерферометрические микроволоконные сенсоры типа Фабри-Перо измеряют 

скорость 0,1–10 мм/с с разрешением 0,1 мкм, интегрируясь в микрофлюидные устройства, 

но демонстрируют ограниченную устойчивость к вибрациям [4]. 

Распределенные волоконно-оптические методы, такие как рамановская оптическая 

рефлектометрия во временной области (ROTDR), оптический анализ Бриллюэна во 

временной области (BOTDA), фазовая оптическая рефлектометрия во временной области 

(ϕ-OTDR) и оптическая частотная рефлектометрия или рефлектометрия в области Фурье 

(OFDR). BOTDA обеспечивает более точные измерения и большие длины мониторинга по 

сравнению с рамановскими датчиками, однако требует продолжительного времени 

измерения (порядка минут). Ограничивающим фактором для методов на основе 
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рамановского и бриллюэновского рассеяния является чрезвычайно низкая интенсивность 

рассеянного света. При более высокой интенсивности рассеяния релеевское рассеяние                     

в ϕ-OTDR больше подходит для длинных участков мониторинга с высокоточными 

количественными измерениями температуры. Разрешение методов временной области 

ограничено минимальной длительностью светового импульса (~10 нс), обеспечивая 

продольное разрешение около одного метра. 

Этот предел преодолевается в OFDR, где обратно рассеянный свет от волокна 

объединяется со светом от эталонного плеча, создавая интерференционный сигнал, 

содержащий информацию о местоположении и величине отраженных явлений по длине 

волокна. Преобразование Фурье комплексного коэффициента отражения в частотной 

области позволяет получить коэффициент отражения как функцию длины. Когерентная 

OFDR достигает субмиллиметрового пространственного разрешения на расстоянии 

десятков-сотен метров волокна с температурным разрешением <1 °С, что идеально 

подходит для мониторинга потока на коротких участках трубопровода. 

Адресные комбинированные волоконные брэгговские структуры (АКВБС) 

реализуют квазираспределенный мониторинг через мультиплексирование в пространстве 

длин волн (WDM), времени (TDM) и частоты (FDMA), обеспечивая опрос до 100 сенсорных 

точек [6-7]. Принципиальным преимуществом АКВБС является применение 

радиофотонной адресной интеррогации (РФАИ), которая транслирует спектральное 

положение брэгговского резонанса в радиочастотную область, обеспечивая иммунитет                  

к электромагнитным помехам и снижая требования к полосе оптического источника. Метод 

постоянной мощности нагрева позволяет регистрировать изменение разности температур 

между опорным и нагреваемым датчиками, достигая диапазона измерений                                             

50–1000 мкл/мин с ошибкой <1%. Интеграция адресного комбинированного 

интерферометра Фабри-Перо (АКИФП) в структуру сенсора повышает точность за счёт 

одновременной регистрации температуры двумя различными принципами детектирования 

в одной пространственной точке. 

Заключение  

Анализ подтверждает превосходство распределенных и квазираспределенных ВОТ 

(OFDR/АВБС) для бортовых приложений, обеспечивая метрологическую точность ниже 

1% и устойчивость к условиям повышенной взрывоопасности, электромагнитных помех,         

а также агрессивности используемых сред за счёт импульсного нагрева                                                       

и мультиплексирования, что повышает безопасность эксплуатации на 20–30% по 

сравнению с традиционными методами [1, 8]. 
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