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В этой краткой заметке найдено общее решение линейного дифференциального 

уравнения второго порядка с переменными коэффициентами, полученного методом рас-

щепления. 

Автор этой заметки, узнав из Интернета о грандиозном достижении математика  

И.Д. Ремизова (https://www.hse.ru/news/science/1122687898.html) [1], решил предложить 

свой альтернативный (и весьма простой по сравнению с [1]) подход, который также имеет 

право на существование. Суть этого подхода восходит к работам профессора Ю.И. Бабенко 

[2], который расщепил одномерное уравнение диффузии и нашел его новые аналитические 

решения для нелинейных случаев.  

Пусть дано линейное ДУ второго порядка, которое мы запишем в стандартном виде 
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В дальнейшем, чтобы не загромождать промежуточные выкладки, мы опустим вре-

менно зависимость от управляющей переменной х и восстановим эту зависимость в окон-

чательных выражениях. Вторая строка в выражении (1) эквивалентная запись, но более 

предпочтительна в наших расчетах, приведенных ниже. Следуя логике "расщепления" Ба-

бенко Ю.И. [2] допустим, что уравнение (1) можно записать в виде 
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В выражении (2) мы предполагаем симметрию относительно перестановки функций 

1(x)2(x). Раскрывая множители слева в (2) и учитывая симметрию этих функций отно-

сительно их перестановок друг с другом, получим  
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Раскрывая скобки слева и приравнивая их к соответствующим выражениям справа, 

получим систему дифференциальных уравнений первого порядка для отыскания неизвест-

ных функций 1,2(x).  

https://www.hse.ru/news/science/1122687898.html
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Из этой системы получим систему уравнений для функций 1,2(x). 

 

1 2

1 2

,

1
.

2

    

   

p

q Dp
                (5) 

 

Решая эту систему уравнений, получим искомое решение для неизвестных функций 

1,2(x).  
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Используя это решение, получим две эквивалентные системы для отыскания неиз-

вестной функции y(x) 
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Разрешая эти два простейших уравнения относительно y(x), получаем (в силу линей-

ности исходного ДУ) искомую комбинацию  
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Последние три формулы решают задачу о нахождении общего решения уравнения 

вида (1), полученного методом расщепления. Автор в этой краткой заметке не претендует 

на то, что это решение (8) единственное. Задача математиков – обосновать это решение и 

найти границы его применимости. Думаю, что в силу его простоты, оно также найдет свое 

применение в широком классе задач, наряду с методом, предложенным И. Ремизовым. 

Хочу особо подчеркнуть, что автор этой заметки не разбирался в деталях решения [1].  

Автор считает, что найдутся математики, которым будет интересно сравнить решение, по-

лученное в статье [1] c решением (8), полученное методом расщепления.  
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